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Future e*e- Colliders

e Essentially, factories of bosons: W, Z, H

* Physics program heavily relies on precise measurements
of/with the bosons
— Eletroweak physics with W/Z, Higgs properties, new physics ...
 Dominant decays of the bosons are hadronic: hadronic jets

* Precise measurement of hadronic jets is a primary driver in the
experiment designs for next generation e+e- colliders.
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Jet Measurement Precision

* Figure of merit: separating W and Z bosons in their hadronic

decays .

* This translates into a jet energy resolution requirement of ~
3-4% over a wide jet energy range (~ 30% JNE).

— A factor of two improvement w.r.t. traditional jet measurement
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Particle Flow Algorithm

* Particle Flow Algorithm (PFA) is a very promising approach to
achieving the unprecedented jet energy resolution of 3%-4%.

— All particles are individually reconstructed.

— Energy/momentum of each particle in a jet is determined by making
use of the optimal sub-detector for the particle.

e Charged particles by trackers (~65%)
* Photons by ECAL (~25%)
* Neutral hadrons by HCAL (~10%)

— Impact of poor HCAL measurement is largely limited.
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* Central requirement: separate showers in calorimeters
produced by charged and neutral particles in a jet

— To avoid double or under-counting of shower energy

* A highly segmented and full-contained calorimeter system is
the core element in realizing PFA.

— Combined with a transparent tracking system.

* High-granular calorimeters also provide essential information
for particle identification: electrons, hadrons, muons

« High 3-d granularity of both ECAL and
HCAL is the key to PFA
— Granularity should be significantly smaller
than typical shower size.
« A highly-granular HCAL plays a central

role in realizing PFA
— Hadron showers account for 75% of a jet




 Beam structure affecting readout and cooling
— Very low duty cycle (linear colliders) vs. Continuous operation (circular colliders)

 Event rate N 3
— 32 kHz at Z pole at CEPC (CDR) L R s
— 20 kHz (?) at Z pole at FCC-ee* o A (] == o
» A maximum of 100 kHz by safety margin. | B =

* background and occupancy
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Limited event rate and low detector occupancy when operating in a sub-TeV domain

* “FCC-ee physics & experiments CDR plan and status” by Roberto Tenchini at FCC Week 2017




Detector Concepts of PFA HCAL

e Various PFA HCAL detector concepts have been proposed for
experiments at future e+e- colliders.
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Ultimately, all the PFA HCAL detector concepts originated from those for ILC




* ILD-HCAL (Fe, 6),)

ILD-SDHCAL
— 48 layers

e 2cm steel + Y6mm active layer

— AHCAL

(No projective cracks, service at outer radius)
e Sci+SiPM, cell-size: 3cmx3cm . LD-AHCAL
_ SDHCAL g @ | e
- glassRPC, cell-size: 1emxlecm |18
|
* SiD-HCAL (Fe, 5),)

absorber structure
(half-sector)

— 40 layers

DAQ interface boards
DIF, CALIB, POWER

SiD-HCAL
e 2cm steel + ~¥6-8mm active layer

— AHCAL(Sci+SiPM): baseline
— DHCAL (glassRPC): alternative




CLIC

Orignal in CDR Optimised now

CLIC-ILD CLIC-SiD CLICdet
(adapted from ILD) (adapted from SiD)

q
* Two readout concpets AHCAL
- DHCAL (glassRPC, 1cmx1cm) Active | . 6.5
— AHCAL (Sci+SiPM, 3cmx3cm) ctive fayer. ©.omm

- ScitSiPM, 3cmx3cm
* Absorber: 7.5 A,

- Fe, 60 layers x 2cm

* Absorber: 7.5 A,
- Barrel: W, 75 layers x 1cm
- Endcaps: Fe, 60 layers x 2cm
- to contain events at 3 TeV




FCC-ee

CLD — a detector derived from CLICdet for FCC-ee

HCal

v

v

W

HCal BARREL INNER RADIUS changed to
2.4m

« due to larger tracker

w

HCal ENDCAP
« size adjusted
%« outer radius = 3.57 m
w outer z = 3.71 m (CLIC: 4.13 m)

v« STRUCTURE unchanged:
« steel + scintillator sampling calorimeter

«  Segmentation adjusted:
« Number of layers: 44
» Number of interaction lengths: 5.5 Ao
« CLIC: 7.5 Ao
v« ILD: 5.5 Ao (optimized for 500GeV
=> similar energy scale as FCC)

from “A CLIC-inspired detector for FCC-ee” by Emilia Leogrande

AHCAL
« Active layer : 6.5mm
- Sci+SiPM, 3cmx3cm
* Absorber: 5.5 A,

- Fe, 44 layers x 2cm



CEPC

SDHCAL

* Absorber
— Fe, 40 layers x 2cm, 54,
* Active layer

— SDHCAL
AHCAL  glassRPC, 6mm thick
AHCAL barrel AHCAL super module AHCAL endcap ° CE”'Size: 1cm><1cm

— AHCAL
e Sci+SiPM, ~5mm thick
e cell-size: 3cmx3cm

Both adapted from ILD




PFA HCAL Technoloc

]

\ /

Scintillator RPC

Micro-pattern

gaseous detectors

e Absorber material

— Tungsten
— lron
W vs. Fe
Material A;[em] Xg[em] A;1/Xp
Fe 16.77 1.76 9.5
W 9.95 0.35 284

—

Active medium
— Dense: scintillator
* Analog readout

good linearity, large cell size allowed
— less channels.

— Thin: gaseous detectors
* Digital readout

simple readout, subjected to saturation
— multi-threshold readout (semi-digital),
finely segmented readout required —
more channels.

W: dense— a compact detector, expensive,
large 1 /X, ratio—~EM under-sampled, poor
mechanical properties.

Fe: cost-effective, rigid & self-supporting,
moderate A /X, ratio, large volume.



PFA HCAL Development

e R&D conducted in the framework of CALICE

* Proceeded in two steps
— Physics prototypes
— Technological prototypes
=> Physics prototypes

— provide a proof-of-principle of the viability of a given
technology in terms of construction, operation and
performance.

-> Technological prototypes

— address issues of scaling, integration and cost
optimization.



RPC-DHCAL

* A full-size prototype with embedded readout electronics
was constructed

— 3 glass-RPC chambers (32x96 cm? each) spliced to form a RPC
layer: ~ 1x1 m?

— The RPC layer combined with readout boards to form a 8-9mm
thick active layer

— An active layer was sandwiched by a 2mm copper front-plate (to
cool electronics) and a 2mm steel back-plate (to support each
active layer).

— 54 |ayers in total. The layers were inserted into a steel or tungsten
absorber stack to form a DHCAL prototype.

— 1x1cm? RPC readout pads, 0.54 M channels, 1-bit digital readout

* Both Steel-DHCAL and tungsten-DHCAL were tested with
particle beams.



Prototype Construction
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From “Digital Hadron Calorimetry” by Burak Bilki at CHEF2017
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Results from beam tests
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« First large-scale PFA
calorimeter prototype
with embedded front-

end electronics !

« The concept of DHCAL
is validated.




RPC-SDHCAL

. _ Very compact glass RPC unit
e 48 layers with cross-section of

1m?, a total active volume of

1.3m3.

* Very compact active layers of Embedded readout electronics
RPC with embedded FEE: 6mm/layer g o
1x1cm? readout pad.

SDHC
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. . . logical protot
e Each active layer is sandwiched oo co ProOYPe

by two 2.5mm steel plates for
mechanical supporting.

e 3-threshold readout (2 bit):
semi-digital, ~0.5M channels.

* Active layers inserted into a
steel absorber structure




Reconstruction with digital readout
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information lost due to binary readout. It N :
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* The previous SDHCAL prototype has validated and
characterized the RPC-based SDHCAL technology.

* A new prototype is being built to address real-world
challenges/constrains GRPC

/ Glass Resistive Plate Chambers

— Very large size: 1x3 m

— Robust and efficient
electronics and DAQ

— little dead area at edges

— Optional: timing information

* 1x3m large RPCs equipped with improved electronics
are inserted into a mechanical structure of four 1x3m?
steel plates.



New Features
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“Status of the Electronics and Mechanics for the new large SDHCAL prototype” by Mary-Cruz Fouz
at CALICE collaboration meeting 2018 in Shanghai




Main Structure

Active layer inserting test
Steel mechanical structure
serving as absorber
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“Status of the Electronics and Mechanics for the new large SDHCAL prototype”
by Mary-Cruz Fouz at CALICE collaboration meeting 2018 in Shanghai




Sci-AHCAL

* Rapid development of SiPM technology made a
scintillator-based PFA calorimeter possible.

* Alarge-scale physics prototype was built
— scintillator tiles in varying size, WLS+SiPM, FEE not imbedded

— 38 layers, cross-section: 1x1m?, volume: 1m3, ~7.6 k channels

— tested with both tungsten and steel absorber
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e Software compensation improves energy resolution

linearity and Resolution

significantly while preserving linearity.
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The Sci-AHCAL concept is validated



Scalability: SiPM-on-Tile

 Must integrate SiPM in the electronics readout board and
embed front-end electronics in the detector in an easy way for
mass assembling.

— “SiPM on tile” technology

Evolution of tile-SiPM coupling

* A technological prototype was built with “SiPM on tile”.
— HCAL Basic Unit (HBU): 36x36 cm?, 144 tiles of 3x3cm?,
— 38 active layers, each layer made up with 4 HBU tles). M.
— ~22 k channels, surface-mounted SiPM: S13360-1325PE ﬂ' s
— Completely scalable to a collider detector by using HBU K




Camera system
with flash light

A hadronlc shower dlsplay

= Scalability to a full collider detector with SiPM-on-Tile technology,
automated construction and QA procedures established and validated.

= CMS has adopted the technology for its HGCAL upgrade!



Challenges

* Challenges lie mainly in engineering and operation areas.

* Extremely large scale with a daunting number of channels! All
elements have to be scalable in a well-manageable way with
the least dead area/zone.

* Electronics must be integrated into active detector elements
on a very large scale and in a very compact way. The whole
active layer has to stay as compact as possible.

* Reliability, stability and uniformity in a huge number of
channels. Operation and maintenance.

e Cooling at circular e+e- colliders with continuous operation !!!




CEPC HCAL Optimization

* Number of sampling layers for SDHCAL

— 40 layers (1m steel in total) is sufficient. Even less is OK.
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* Cell-size optimization is also ongoing.



One Example of Cell-size Optimization

e Sci-AHCAL with various cell sizes and in non-uniform
cell-size configurations.

Jet energy resolutions expected for different configurations of granularity
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CEPC HCAL R&D

e Supported by two MOST (ministry of science and
technology of China) R&D projects

— DHCAL: technology R&D on active detectors (RPC/MPGD)
— AHCAL: a prototype with Sci+SiPM

* |nstitutes being involved in the R&D projects
— |HEP, SJTU, USTC
— All joined CALICE




GEM R&D for DHCAL

 Built a 30x30 cm? double-GEM prototype and fully
characterized it with X-rays and cosmic-rays

MIP efficiency vs. HV Pad multiplicity vs. HV
§0-92_ é‘ '-2;
09F ‘ = L1

Gain vs. HV - A gas mixture with a high Ar percentage plus a
A powerful quenching ingredient, e.g. Ar/iC4H10(95/5),

// Is required to get fully efficient.

/ - Efficiency > 98% while pad multiplicity ~ 1.3, good

performance.
- Unfortunately, this option was abandoned due to large
R - TR T dead area at edges and partly to large gas gap.

AV2(V)



THGEM R&D for DHCAL

* Then merged effort to be focused on THGEM for the
MPGD approach.

WELL-THGEM

Cathode == - - - e .-

Drift

3-4mm

THGEM Transfer

Anode «1.6mm

Induction

Gain with different THGEM thickness

10* T 1.0
n ) . \\:\*i - 83"6'3 mm : | w@
+#40cmX40emaTHGEM Sosem § ! # |
~ N § 10 F o05mm @ . e 2
r 40.8mm - ” 4 04 s
. vy - THGEM = o A |
The goal now is to make a detector unit in ' thickness o 1,
50x50 cm2 and can scale to a large active layer N l,
by combining such units with little dead area. 0 1 2 3 4 5 6 7 8 9 10

V(THGEM) in volt (x10%)



R&D for AHCAL

* Scintillator tiles by injection molding e RO
Py 3/ | e ‘
* Wrapping with ESR ATPRRE VI AN

z | ;
N ESR design E
\ Npe~24 with
* SiPM development at Beijing Normal A e fairly good
. . uniformity
LIniversitv .

- — ’{ A large SiPM-on-Title AHCAL prototype
T o T P with a customized SiPM and a new
. ; X | Resistor | - tpitaxia | Resistor | : . . . .
L/ N/ v /] SiPM readout chip is envisaged
N+ Substrate v

SiPM with epitaxial quenching resistors (EQR): large fill-factor and low cost



Summar

* PFA is a promising approach to achieving the
unprecedented jet energy resolution required by next
generation e+e- experiments.

* A highly-granular HCAL plays a crucial role in the PFA
approach.

* Various PFA HCAL concepts and technologies.
* Extensive R&D conducted in CALICE.
* Dedicated R&D for CEPC has picked up the pace.

— Active cooling study started as well

* Very challenging but feasible.



